Simulation and Optimization of Full Scale Reverse Osmosis Desalination Plant

نویسندگان

  • Kamal M. Sassi
  • Iqbal M. Mujtaba
چکیده

This paper focuses on steady state performance predictions and optimization of the Reverse Osmosis (RO) process utilizing a set of implicit mathematical equations which are generated by combining solution-diffusion model with film theory approach. The simulation results were compared with operational data which are in good agreement having relative errors of 0.71% and 1.02%, in terms of water recovery and salt rejection, respectively. The sensitivity of different operating parameters (feed concentration, feed flow rate and feed pressure) and design parameters (number of elements, spacer thickness, length of filament) on the plant performance were also investigated. Finally a non linear optimization framework to minimize specific energy consumption at fixed product flow rate and quality while optimizing operating variables (feed flow rate, feed pressure) and design parameters (height of feed spacer, length of mesh filament). Reduction in operating costs and energy consumption up to 50 % can be reached by using pressure exchanger as energy recovery device.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Various Approaches to Thermodynamic Optimization of a Hybrid Multi-effect Evaporation with Thermal Vapour Compression and Reverse Osmosis Desalination System Integrated to a Gas Turbine Power Plant

This paper investigates the simulation of a hybrid desalination system composed of multi-effect evaporation with thermal vapour compression desalination (METVC) and reverse osmosis (RO) plant. The hybrid desalination system is also integrated with a gas turbine power plant through a heat recovery steam generator (HRSG). First, a comprehensive Thermodynamic model for HRSG, METVC, and RO are deve...

متن کامل

Time-Dependent Desalination Tests for Small-Scale SWRO Pilot Plant Installed at Urla Bay, Turkey

In this work, performance data from a small-scale reverse osmosis (RO) plant based on seawater FilmTec spiral wound RO membranes for different periods of operation are presented and analyzed. A prototype RO set-up with a 2,200 L/d capacity was installed and operated at Urla Bay which was located in Izmir, Turkey. This study typically investigates RO performance in terms ...

متن کامل

A numerical study of fractional order reverse osmosis desalination model using Legendre wavelet approximation

The purpose of this study is to develop a new approach in modeling and simulation of a reverse osmosis desalination system by using fractional differential equations. Using the Legendre wavelet method combined with the decoupling and quasi-linearization technique, we demonstrate the validity and applicability of our model. Examples are developed to illustrate the fractional differential techniq...

متن کامل

Operational Optimization of Large-Scale Parallel-Unit SWRO Desalination Plant Using Differential Evolution Algorithm

A large-scale parallel-unit seawater reverse osmosis desalination plant contains many reverse osmosis (RO) units. If the operating conditions change, these RO units will not work at the optimal design points which are computed before the plant is built. The operational optimization problem (OOP) of the plant is to find out a scheduling of operation to minimize the total running cost when the ch...

متن کامل

Experimental Investigation of Energy Consumption and Performance of Reverse Osmosis Desalination using Design of Experiments Method

To control the quality of reverse osmosis (RO) product water and reduce operational costs and environmental impacts by increasing the system’s energy efficiency, it is necessary to identify the influence of process parameters on energy consumption and permeate water quality. This paper introduces a case study focused on the application of Design of Experiments (DOE) method in an industrial-scal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009